Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Emotion ; 24(2): 397-411, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37616109

RESUMO

The COVID-19 pandemic presents challenges to psychological well-being, but how can we predict when people suffer or cope during sustained stress? Here, we test the prediction that specific types of momentary emotional experiences are differently linked to psychological well-being during the pandemic. Study 1 used survey data collected from 24,221 participants in 51 countries during the COVID-19 outbreak. We show that, across countries, well-being is linked to individuals' recent emotional experiences, including calm, hope, anxiety, loneliness, and sadness. Consistent results are found in two age, sex, and ethnicity-representative samples in the United Kingdom (n = 971) and the United States (n = 961) with preregistered analyses (Study 2). A prospective 30-day daily diary study conducted in the United Kingdom (n = 110) confirms the key role of these five emotions and demonstrates that emotional experiences precede changes in well-being (Study 3). Our findings highlight differential relationships between specific types of momentary emotional experiences and well-being and point to the cultivation of calm and hope as candidate routes for well-being interventions during periods of sustained stress. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
COVID-19 , Pandemias , Humanos , Bem-Estar Psicológico , Estudos Prospectivos , Emoções
2.
Biol Open ; 12(10)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756597

RESUMO

Body coloration in ectotherms serves multiple biological functions, including avoiding predators, communicating with conspecific individuals, and involvement in thermoregulation. As ectotherms rely on environmental sources of heat to regulate their internal body temperature, stable melanistic body coloration or color change can be used to increase or decrease heat absorption and heat exchange with the environment. While melanistic coloration for thermoregulation functions to increase solar radiation absorption and consequently heating in many diurnal ectotherms, research on crepuscular and nocturnal ectotherms is lacking. Since crepuscular and nocturnal ectotherms generally absorb heat from the substrate, in these organisms melanistic coloration may have other primary functions beside thermoregulation. As such, in this work we hypothesized that the proportion of dorsal melanistic body coloration would not influence heating and cooling rates in the crepuscular gecko, Eublepharis macularius, and that changes in environmental temperature would not trigger color changes in this species. Temperature measurements of the geckos and of the environment were taken using infrared thermography and temperature loggers. Color data were obtained using objective photography and a newly developed custom software package. We found that body temperature reflected substrate temperatures, and that the proportion of melanistic coloration has no influence on heating or cooling rates or on color changes. These findings support that melanistic coloration in E. macularius may not be used for thermoregulation and strengthen the hypothesis that in animals active in low light conditions, melanistic coloration may be used instead for camouflage or other functions.


Assuntos
Regulação da Temperatura Corporal , Lagartos , Animais , Lagartos/fisiologia , Temperatura Corporal , Temperatura , Temperatura Alta
3.
PLoS One ; 18(8): e0287891, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37556448

RESUMO

A paleoparasitological investigation of a vertebrate coprolite from the Huai Hin Lat Formation (Upper Triassic) was carried out. Five morphotypes of potential parasite eggs or sporocysts were identified in the coprolite by microscopic analysis using thin section technique. The rounded or oval shape and thick shell of one of the five morphotypes suggests that it belongs to nematode of the order Ascaridida. Systematic assignment of other morphotypes cannot be done in detail but suggests that the host was parasitized by different species of parasites. This is the first record of parasites in terrestrial vertebrate hosts from the Late Triassic in Asia and it provides new information on parasite-host interactions during the Mesozoic era.


Assuntos
Nematoides , Parasitos , Animais , Tailândia , Fósseis , Vertebrados , Interações Hospedeiro-Parasita
4.
BMC Ecol Evol ; 22(1): 87, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773630

RESUMO

BACKGROUND: The skull of placental mammals constitutes one of the best studied systems for phenotypic modularity. Several studies have found strong evidence for the conserved presence of two- and six-module architectures, while the strength of trait correlations (integration) has been associated with major developmental processes such as somatic growth, muscle-bone interactions, and tooth eruption. Among placentals, ant- and termite-eating (myrmecophagy) represents an exemplar case of dietary convergence, accompanied by the selection of several cranial morphofunctional traits such as rostrum elongation, tooth loss, and mastication loss. Despite such drastic functional modifications, the covariance patterns of the skull of convergently evolved myrmecophagous placentals are yet to be studied in order to assess the potential consequences of this dietary shift on cranial modularity. RESULTS: Here, we performed a landmark-based morphometric analysis of cranial covariance patterns in 13 species of myrmecophagous placentals. Our analyses reveal that most myrmecophagous species present skulls divided into six to seven modules (depending on the confirmatory method used), with architectures similar to those of non-myrmecophagous placentals (therian six modules). Within-module integration is also similar to what was previously described for other placentals, suggesting that most covariance-generating processes are conserved across the clade. Nevertheless, we show that extreme rostrum elongation and tooth loss in myrmecophagid anteaters have resulted in a shift in intermodule correlations in the proximal region of the rostrum. Namely, the naso-frontal and maxillo-palatine regions are strongly correlated with the oro-nasal module, suggesting an integrated rostrum conserved from pre-natal developmental processes. In contrast, the similarly toothless pangolins show a weaker correlation between the anterior rostral modules, resembling the pattern of toothed placentals. CONCLUSIONS: These results reveal that despite some integration shifts related to extreme functional and morphological features of myrmecophagous skulls, cranial modular architectures have conserved the typical mammalian scheme.


Assuntos
Eutérios , Perda de Dente , Animais , Evolução Biológica , Feminino , Placenta , Gravidez , Crânio/anatomia & histologia
5.
PeerJ ; 9: e11805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34430073

RESUMO

The geoemydid turtles of the Eocoene Messel Pit Quarry of Hesse, Germany, are part of a rich Western European fossil record of testudinoids. Originally referred to as "Ocadia" kehreri and "Ocadia" messeliana, their systematic relationships remain unclear. A previous study proposed that a majority of the Western European geoemydids, including the Messel geoemydids, are closely related to the Recent European representatives of the clade Mauremys. Another study hypothesised that the Western European geoemydid fauna is more phylogenetically diverse, and that the Messel geoemydids are closely related to the East Asian turtles Orlitia and Malayemys. Here we present the first quantitative analyses to date that investigate this question. We use continuous characters in the form of ratios to estimate the placement of the Messel geoemydids in a reference tree that was estimated from molecular data. We explore the placement error obtained from that data with maximum likelihood and Bayesian methods, as well as linear parsimony in combination with discrete characters. We find good overall performance with Bayesian and parsimony analyses. Parsimony performs even better when we also incorporated discrete characters. Yet, we cannot pin down the position of the Messel geoemydids with high confidence. Depending on how intraspecific variation of the ratio characters is treated, parsimony favours a placement of the Messel fossils sister to Orlitia borneensis or sister to Geoemyda spengleri, with weak bootstrap support. The latter placement is suspect because G. spengleri is a phylogenetically problematic species with molecular and morphological data. There is even less support for placements within the Mauremys clade.

6.
Trop Med Infect Dis ; 6(3)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203491

RESUMO

Leptospirosis has been recognized as a major public health concern in Thailand following dramatic outbreaks. We analyzed human leptospirosis incidence between 2004 and 2014 in Mahasarakham province, Northeastern Thailand, in order to identify the agronomical and environmental factors likely to explain incidence at the level of 133 sub-districts and 1982 villages of the province. We performed general additive modeling (GAM) in order to take the spatial-temporal epidemiological dynamics into account. The results of GAM analyses showed that the average slope, population size, pig density, cow density and flood cover were significantly associated with leptospirosis occurrence in a district. Our results stress the importance of livestock favoring leptospirosis transmission to humans and suggest that prevention and control of leptospirosis need strong intersectoral collaboration between the public health, the livestock department and local communities. More specifically, such collaboration should integrate leptospirosis surveillance in both public and animal health for a better control of diseases in livestock while promoting public health prevention as encouraged by the One Health approach.

7.
Biol Methods Protoc ; 5(1): bpaa023, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324759

RESUMO

Quantifying phenotypes is a common practice for addressing questions regarding morphological variation. The time dedicated to data acquisition can vary greatly depending on methods and on the required quantity of information. Optimizing digitization effort can be done either by pooling datasets among users, by automatizing data collection, or by reducing the number of measurements. Pooling datasets among users is not without risk since potential errors arising from multiple operators in data acquisition prevent combining morphometric datasets. We present an analytical workflow to estimate within and among operator biases and to assess whether morphometric datasets can be pooled. We show that pooling and sharing data requires careful examination of the errors occurring during data acquisition, that the choice of morphometric approach influences amount of error, and that in some cases pooling data should be avoided. The demonstration is based on a worked example (Sus scrofa teeth) using a combinations of 18 morphometric approaches and datasets for which we identified and quantified several potential sources of errors in the workflow. We show that it is possible to estimate the analytical power of a study using a small subset of data to select the best morphometric protocol and to optimize the number of variables necessary for analysis. In particular, we focus on semi-landmarks, which often produce an inflation of variables in contrast to the number of available observations use in statistical testing. We show how the workflow can be used for optimizing digitization efforts and provide recommendations for best practices in error management.

8.
Sci Rep ; 10(1): 12832, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732947

RESUMO

The size and shape of organs is tightly controlled to achieve optimal function. Natural morphological variations often represent functional adaptations to an ever-changing environment. For instance, variation in head morphology is pervasive in insects and the underlying molecular basis is starting to be revealed in the Drosophila genus for species of the melanogaster group. However, it remains unclear whether similar diversifications are governed by similar or different molecular mechanisms over longer timescales. To address this issue, we used species of the virilis phylad because they have been diverging from D. melanogaster for at least 40 million years. Our comprehensive morphological survey revealed remarkable differences in eye size and head shape among these species with D. novamexicana having the smallest eyes and southern D. americana populations having the largest eyes. We show that the genetic architecture underlying eye size variation is complex with multiple associated genetic variants located on most chromosomes. Our genome wide association study (GWAS) strongly suggests that some of the putative causative variants are associated with the presence of inversions. Indeed, northern populations of D. americana share derived inversions with D. novamexicana and they show smaller eyes compared to southern ones. Intriguingly, we observed a significant enrichment of genes involved in eye development on the 4th chromosome after intersecting chromosomal regions associated with phenotypic differences with those showing high differentiation among D. americana populations. We propose that variants associated with chromosomal inversions contribute to both intra- and interspecific variation in eye size among species of the virilis phylad.


Assuntos
Variação Anatômica/genética , Inversão Cromossômica/genética , Drosophila/anatomia & histologia , Drosophila/genética , Olho/anatomia & histologia , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Tamanho do Órgão/genética , Animais , Fenótipo , Especificidade da Espécie
9.
PeerJ ; 7: e7476, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31497387

RESUMO

BACKGROUND: In the last 20 years, a general picture of the evolutionary relationships between geoemydid turtles (ca. 70 species distributed over the Northern hemisphere) has emerged from the analysis of molecular data. However, there is a paucity of good traditional morphological characters that correlate with the phylogeny, which are essential for the robust integration of fossil and molecular data. Part of this problem might be due to intrinsic limitations of traditional discrete characters. Here, we explore the use of continuous data in the form of 3D coordinates of homologous landmarks on the turtle shell for phylogenetic inference and the phylogenetic placement of single species on a scaffold molecular tree. We focus on the performance yielded by sampling the carapace and/or plastral lobes and using various phylogenetic methods. METHODS: We digitised the landmark coordinates of the carapace and plastron of 42 and 46 extant geoemydid species, respectively. The configurations were superimposed and we estimated the phylogenetic tree of geoemydids with landmark analysis under parsimony, traditional Farris parsimony, unweighted squared-change parsimony, maximum likelihood with a Brownian motion model, and neighbour-joining on a matrix of pairwise Procrustes distances. We assessed the performance of those analyses by comparing the trees against a reference phylogeny obtained from seven molecular markers. For comparisons between trees we used difference measures based on quartets and splits. We used the same reference tree to evaluate phylogenetic placement performance by a leave-one-out validation procedure. RESULTS: Whatever method we used, similarity to the reference phylogeny was low. The carapace alone gave slightly better results than the plastron or the complete shell. Assessment of the potential for placement of single species on the reference tree with landmark data gave much better results, with similar accuracy and higher precision compared to the performance of discrete characters with parsimony.

10.
J Exp Biol ; 222(Pt 12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31097601

RESUMO

Morphological traits are frequently used as proxies for functional outputs such as bite force performance. This allows researchers to infer and interpret the impacts of functional variation, notably in adaptive terms. Despite their mechanical bases, the predictive power of these proxies for performance is not always tested. In particular, their accuracy at the intraspecific level is rarely assessed, and they have sometimes been shown to be unreliable. Here, we compared the performance of several morphological proxies in estimating in vivo bite force, across five species of murine rodents, at the interspecific and intraspecific levels. Proxies used included the size and shape of the mandible, as well as individual and combined muscular mechanical advantage (temporalis, superficial masseter and deep masseter). Maximum voluntary bite force was measured in all individuals included. To test the accuracy of predictions allowed by the proxies, we combined linear regressions with a leave-one-out approach, estimating an individual's bite force based on the rest of the dataset. The correlations between estimated values and the in vivo measurements were tested. At the interspecific and intraspecific levels, size and shape were better estimators than mechanical advantage. Mechanical advantage showed some predictive power at the interspecific level, but generally not within species, except for the deep masseter in Rattus In a few species, size and shape did not allow us to predict bite force. Extrapolations of performance based on mechanical advantage should therefore be used with care, and are mostly unjustified within species. In the latter case, size and shape are preferable.


Assuntos
Força de Mordida , Mandíbula/fisiologia , Camundongos/fisiologia , Ratos/fisiologia , Animais , Mandíbula/anatomia & histologia , Camundongos/anatomia & histologia , Modelos Biológicos , Ratos/anatomia & histologia , Especificidade da Espécie
11.
Ecol Appl ; 29(4): e01886, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986339

RESUMO

The reduction in biodiversity from land use change due to urbanization and agricultural intensification appears to be linked to major epidemiological changes in many human diseases. Increasing disease risks and the emergence of novel pathogens result from increased contact among wildlife, domesticated animals, and humans. We investigated the relationship between human alteration of the environment and the occurrence of generalist and synanthropic rodent species in relation to the diversity and prevalence of rodent-borne pathogens in Southeast Asia, a hotspot of threatened and endangered species, and a foci of emerging infectious diseases. We used data from an extensive pathogen survey of rodents from seven sites in mainland Southeast Asia in conjunction with past and present land cover analyses. At low spatial resolutions, we found that rodent-borne pathogen richness is negatively associated with increasing urbanization, characterized by increased habitat fragmentation, agriculture cover and deforestation. However, at a finer spatial resolution, we found that some major pathogens are favored by environmental characteristics associated with human alteration including irrigation, habitat fragmentation, and increased agricultural land cover. In addition, synanthropic rodents, many of which are important pathogen reservoirs, were associated with fragmented and human-dominated landscapes, which may ultimately enhance the opportunities for zoonotic transmission and human infection by some pathogens.


Assuntos
Doenças dos Roedores , Animais , Sudeste Asiático , Biodiversidade , Ecossistema , Humanos , Roedores
12.
Curr Zool ; 64(2): 183-191, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30402058

RESUMO

Sexual selection is considered the major cause of sexual dimorphism, but recent observations suggest that natural selection may play a more important role in the evolution of sex differentiation than previously recognized. Therefore, studying the trade-offs between natural selection and sexual selection is crucial to a better understanding of the ecology underlying the evolution of sexual dimorphism. The freshwater blenny Salaria fluviatilis, a fish inhabiting lakes and rivers around the Mediterranean Sea, displays strong sexual dimorphism in size, shape, and behavior (i.e., larger body and head size for males and higher swimming requirements for females during the reproductive period). We tested for differences in sexual dimorphism in size and shape between the populations from lake and river habitats with the goal of identifying the trade-offs between natural and sexual selection that underlie variations in sexual dimorphism in this species. Our results show i) differences in sexual size dimorphism (SSizeD) in accordance to Rensch's rule (i.e., larger individuals in rivers associated with higher SSizeD), and ii) a decrease in shape differentiation between males and females in lake populations. Together, this suggests that the different environmental conditions between lake and river habitats (e.g., resource limitations, predation pressure, water velocity) affect the relative importance of sexual selection in the display of sexual dimorphism within the species. This study highlights the importance of considering the environmental conditions to which populations are exposed to better understand the ecology underlying the evolution of sexual dimorphism.

13.
J Morphol ; 279(9): 1234-1255, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30117607

RESUMO

Murine rodents display a unique cranial morphology and masticatory musculature. Yet detailed myological descriptions are scarce, especially considering the great diversity of the subfamily and the use of the house mouse and brown rat as model organisms. The masticatory musculature in these two species has been thoroughly described, which allows comparisons with other wild species. Description and comparison of a wide range of species constitutes a necessary step to fully understand how ecological factors may influence the morphology and myology of the skull in the Murinae and vice versa. In this study, we describe the masticatory musculature of five mouse species: Mus caroli, Mus cervicolor, Mus pahari, Mus fragilicauda, and Mus minutoides. For each species, one to five specimens were dissected, and their muscle weights and volumes calculated. One specimen was selected for iodine-enhanced CT-scanning, which allowed us to digitally reconstruct the musculature. We then compared the different masticatory arrangements between these species, as well as with the previous descriptions of the house mouse and brown rat. We show that interspecific differences especially involved the temporalis muscle and zygomatico-mandibularis muscular groups, although some differences were also seen in the pterygoid muscle and masseter muscle groups. We then propose some ecological interpretations for these differences, by interpreting them in terms of functional differences.


Assuntos
Anatomia Comparada , Músculos da Mastigação/anatomia & histologia , Crânio/anatomia & histologia , Animais , Imageamento Tridimensional , Músculo Masseter/anatomia & histologia , Músculo Masseter/diagnóstico por imagem , Músculos da Mastigação/diagnóstico por imagem , Camundongos , Tamanho do Órgão , Crânio/diagnóstico por imagem , Especificidade da Espécie , Músculo Temporal/anatomia & histologia , Músculo Temporal/diagnóstico por imagem , Tomografia Computadorizada por Raios X
15.
Anat Rec (Hoboken) ; 301(2): 256-266, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29330946

RESUMO

Rodentia is a species-rich group with diversified modes of life and diets. Although rodent skull morphology has been the focus of a voluminous literature, the functional significance of its variations has yet to be explored in live animals. Myomorphous rodents, including murids, have been suggested to represent "high-performance generalists." We measured in vivo bite force in 14 species of wild and lab-reared murid rodents of various sizes and diets to investigate potential morphofunctional differences between them. We dissected their skulls and computed a biomechanical model to estimate bite force. We first tested if our model allowed good estimation of in vivo data. Then, using morphological, in vivo and estimated bite force data in a phylogenetic context, we aimed to find the drivers of bite force differences among species. Estimated and in vivo bite forces were strongly correlated, which indicates that (a) biomechanical models allow a good estimation of real performance, and that (b) size and muscular changes (increased mass, fiber length, and PCSA) are the main drivers of bite performance differences. Myomorphous rodents, therefore, may have evolved high bite force through a combination of changes in size and musculature, which gave them a great versatility in their ability to process food. We found mixed results at the intraspecific level, with only some species displaying a good fit between estimated and in vivo measurements. We suggest that limited variation in size and muscular organization, and increased behavioral variation might decrease the precision of bite force estimates within species. Anat Rec, 301:256-266, 2018. © 2018 Wiley Periodicals, Inc.


Assuntos
Força de Mordida , Dieta , Muridae/fisiologia , Crânio/fisiologia , Animais , Fenômenos Biomecânicos , Muridae/anatomia & histologia , Filogenia , Crânio/anatomia & histologia
16.
Infect Genet Evol ; 63: 404-409, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28554857

RESUMO

The circulation of mammarenaviruses in rodent populations of the Mekong region has recently been established, with a genetic variant of Wenzhou virus, Cardamones virus, detected in two Rattus species. This study tests the potential teratogenic effects of Wenzhou infection on the development of a Murid rodent, Rattus exulans. Using direct virus detection, morphological records and comparative analyses, a link was demonstrated between host infection status and host morphologies (the spleen irrespective of weight, the skull shape and the cranial cavity volume) at the level of the individual (females only). This study demonstrates that mammarenavirus infections can impact natural host physiology and/or affect developmental processes. The presence of an infecting micro-parasite during the development of the rat may lead to a physiological trade-off between immunity and brain size. Alternatively, replication of virus in specialized organs can result in selective morphologic abnormalities and lesions.


Assuntos
Infecções por Arenaviridae/veterinária , Infecções por Arenaviridae/virologia , Arenaviridae/patogenicidade , Interações Hospedeiro-Patógeno , Doenças dos Roedores/virologia , Animais , Arenaviridae/fisiologia , Infecções por Arenaviridae/diagnóstico por imagem , Infecções por Arenaviridae/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/virologia , Camboja , Feminino , Rim/crescimento & desenvolvimento , Rim/virologia , Fígado/crescimento & desenvolvimento , Fígado/virologia , Pulmão/crescimento & desenvolvimento , Pulmão/virologia , Masculino , Tamanho do Órgão , Ratos , Doenças dos Roedores/diagnóstico por imagem , Doenças dos Roedores/patologia , Fatores Sexuais , Crânio/crescimento & desenvolvimento , Crânio/virologia , Baço/crescimento & desenvolvimento , Baço/virologia
17.
Sci Rep ; 7(1): 15828, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192279

RESUMO

Self-righting, the capacity of an animal to self-turn after falling on its back, is a fitness-related trait. Delayed self-righting can result in loss of mating opportunities or death. Traits involved in self-righting may therefore be under selection. Galápagos giant tortoises have two main shell morphologies - saddleback and domed - that have been proposed to be adaptive. The more sloped shape on the sides of the shell and the longer extension of neck and legs of the saddlebacks could have evolved to optimize self-righting. The drier environments with more uneven surfaces where the saddleback tortoises occur increases their risk to fall on their back while walking. The ability to fast overturn could reduce the danger of dying. To test this hypothesis, we used 3D shell reconstructions of 89 Galápagos giant tortoises from three domed and two saddleback species to compare self-righting potential of the two shell morphotypes. Our results indicate that saddleback shells require higher energy input to self-right than domed ones. This suggests that several traits associated with the saddleback shell morphology could have evolved to facilitate self-righting. Studying the functional performances of fitness-related traits, as in this work, could provide important insight into the adaptive value of traits.


Assuntos
Exoesqueleto/anatomia & histologia , Evolução Biológica , Movimento/fisiologia , Tartarugas/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Feminino , Masculino , Tartarugas/anatomia & histologia
18.
J Exp Biol ; 220(Pt 11): 1947-1951, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28566353

RESUMO

Differences in biological performance, at both intra- and inter-specific levels, have often been linked to morphology but seldom to behavioural or genotypic effects. We tested performance at the intraspecific level by measuring bite force in the African pygmy mouse, Mus minutoides. This species displays an unusual sex determination system, with sex-reversed, X*Y females carrying a feminizing X* chromosome. X*Y females cannot be differentiated from XX females based on external or gonadal morphology; however, they are known to be more aggressive. We found that bite force was higher in X*Y females than in other females and males. We then performed geometric morphometric analyses on their skulls and mandibles and found that the higher performance of X*Y females was mainly explained by a greater overall skull size. The effects of the X* chromosome thus go beyond feminization, and extend to whole-organism performance and morphology. Our results also suggest limited effects of behaviour on bite force.


Assuntos
Força de Mordida , Camundongos/genética , Processos de Determinação Sexual/genética , Animais , Feminino , Arcada Osseodentária/anatomia & histologia , Arcada Osseodentária/fisiologia , Masculino , Camundongos/anatomia & histologia , Camundongos/fisiologia , Crânio/anatomia & histologia , Cromossomo X/genética , Cromossomo Y/genética
19.
Sci Rep ; 7: 42376, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28206991

RESUMO

Modern turtles are composed of two monophyletic groups, notably diagnosed by divergent neck retraction mechanisms. Pleurodires (side-necked turtles) bend their neck sideways and protect their head under the anterior margin of the carapace. Cryptodires (hidden-necked turtles) withdraw their neck and head in the vertical plane between the shoulder girdles. These two mechanisms of neck retraction appeared independently in the two lineages and are usually assumed to have evolved for protective reasons. Here we describe the neck of Platychelys oberndorferi, a Late Jurassic early stem pleurodire, and find remarkable convergent morphological and functional similarities with modern cryptodires. Partial vertical neck retraction in this taxon is interpreted to have enabled fast forward projection of the head during underwater prey capture and offers a likely explanation to the functional origin of neck retraction in modern cryptodires. Complete head withdrawal for protection may therefore have resulted from an exaptation in that group.


Assuntos
Fósseis , Pescoço/fisiologia , Tartarugas/anatomia & histologia , Tartarugas/fisiologia , Animais , Fenômenos Biomecânicos , Movimento , Filogenia , Coluna Vertebral/anatomia & histologia , Fatores de Tempo
20.
Oecologia ; 181(3): 885-94, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27041683

RESUMO

Oceanic islands are often inhabited by endemic species that have undergone substantial morphological evolutionary change due to processes of multiple colonizations from various source populations, dispersal, and local adaptation. Galápagos marine iguanas are an example of an island endemic exhibiting high morphological diversity, including substantial body size variation among populations and sexes, but the causes and magnitude of this variation are not well understood. We obtained morphological measurements from marine iguanas throughout their distribution range. These data were combined with genetic and local environmental data from each population to investigate the effects of evolutionary history and environmental conditions on body size and shape variation and sexual dimorphism. Our results indicate that body size and shape are highly variable among populations. Sea surface temperature and island perimeter, but not evolutionary history as depicted by phylogeographic patterns in this species, explain variation in body size among populations. Conversely, evolutionary history, but not environmental parameters or island size, was found to influence variation in body shape among populations. Finally, in all populations except one, we found strong sexual dimorphism in body size and shape in which males are larger, with higher heads than females, while females have longer heads than males. Differences among populations suggest that plasticity and/or genetic adaptation may shape body size and shape variation in marine iguanas. This study will help target future investigations to address the contribution of plasticity versus genetic adaptation on size and shape variation in marine iguanas.


Assuntos
Evolução Biológica , Iguanas , Animais , Tamanho Corporal , Ecologia , Ilhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA